Secondary metabolites from Lansium domesticum as potential anti-inflammatory iNOS inhibitors: An in silico study

Yadi Oktariansyah, Laila Hanum, Muhammad Habiburrahman

Abstract


Inflammation is a crucial mechanism by which the immune system combats disease. However, when it becomes uncontrolled, it can result in acute inflammatory disorders. Although non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for treatment, their associated side effects have prompted the search for safer, natural alternatives. One of the enzymes central to the progression of acute inflammation is inducible nitric oxide synthase (iNOS), particularly its active site, plays a key role in the progression of acute inflammation. Lansium domesticum Corrêa, 1807 have been reported to contain secondary metabolites with anti-inflammatory potential, but their interaction with iNOS has not been systematically explored. This study is the first to comprehensively evaluate these secondary metabolites against iNOS using an in silico approach combing biological activity prediction, physicochemical and pharmacokinetic profiling, and molecular docking simulations. From 53 screened metabolites, nine compounds met drug-likeness and pharmacokinetic criteria and were further analyzed through molecular docking.  Ellagic Acid, (+)-Spathulenol, α-Cadinene, and τ-Muurolol showed substantial binding affinities at the iNOS active site, which suggests that they could be good anti-inflammatory agents. These results establish a basis for subsequent in vitro and in vivo validation aimed at creating safe, natural iNOS inhibitors as herbal-based for the alternative anti-inflammatory medicines.


Keywords


Anti-inflammatory; bioinformatics; in silico; iNOS; Lansium domesticum

Full Text:

PDF

References


Abdallah, H. M., Mohamed, G. A., & Ibrahim, S. R. M. (2022). Lansium domesticum—A Fruit with Multi-Benefits: Traditional Uses, Phytochemicals, Nutritional Value, and Bioactivities. Nutrients, 14(7), 1531. https://doi.org/10.3390/nu14071531

Adachi, K., Sasaki, T., Arai, A., Shimizu, M., & Yamazaki, H. (2024). Impact of variability of in silico and in vitro octanol/water partition coefficients partition coefficients of compounds on the input parameters and results of simplified human physiologically based pharmacokinetic models after virtual oral administrations. The Journal of Toxicological Sciences, 49(10), 459–466. https://doi.org/10.2131/jts.49.459

Agu, P. C., Afiukwa, C. A., Orji, O. U., Ezeh, E. M., Ofoke, I. H., Ogbu, C. O., Ugwuja, E. I., & Aja, P. M. (2023). Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports, 13(1), 13398. https://doi.org/10.1038/s41598-023-40160-2

Al-Mohaya, M., Mesut, B., Kurt, A., & Çelik, Y. S. (2024). In silico approaches which are used in pharmacy. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2024.154854

Asano, D., Takakusa, H., & Nakai, D. (2023). Oral absorption of middle-to-large molecules and its improvement, with a focus on new modality drugs. Pharmaceutics, 16(1), 47. https://doi.org/10.3390/pharmaceutics16010047

Brueckner, A. C., Shields, B., Kirubakaran, P., Suponya, A., Panda, M., Posy, S. L., Johnson, S., & Lakkaraju, S. K. (2024). MDFit: automated molecular simulations workflow enables high throughput assessment of ligands-protein dynamics. Journal of Computer-Aided Molecular Design, 38(1), 24. https://doi.org/10.1007/s10822-024-00564-2

Castro-Alvarez, A., Costa, A., & Vilarrasa, J. (2017). The Performance of Several Docking Programs at Reproducing Protein–Macrolide-Like Crystal Structures. Molecules, 22(1), 136. https://doi.org/10.3390/molecules22010136

Cifuentes, M., Verdejo, H. E., Castro, P. F., Corvalan, A. H., Ferreccio, C., Quest, A. F. G., Kogan, M. J., & Lavandero, S. (2025). Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Physiology, 40(1), 4–25. https://doi.org/10.1152/physiol.00021.2024

Cinelli, M. A., Do, H. T., Miley, G. P., & Silverman, R. B. (2020). Inducible nitric oxide synthase: Regulation, structure, and inhibition. Medicinal Research Reviews, 40(1), 158–189. https://doi.org/10.1002/med.21599

Danforth, D. N. (2021). The Role of Chronic Inflammation in the Development of Breast Cancer. Cancers, 13(15), 3918. https://doi.org/10.3390/cancers13153918

Diep, T. T., Van Dung, L., Van Trung, P., Hoai, N. T., Thao, D. T., Uyen, N. T. T., Linh, T. T. H., Truc, H. T., & Tran, L. T. T. (2023). Essential oils from Acronychia pedunculata (L.) Miq. in Vietnam: chemical composition, antimicrobial, cytotoxicity and nitric oxide inhibition activities. Journal of Essential Oil Bearing Plants, 26(6), 1460–1472. https://doi.org/10.1080/0972060X.2023.2287595

Domper Arnal, M.-J., Hijos-Mallada, G., & Lanas, A. (2022). Gastrointestinal and cardiovascular adverse events associated with NSAIDs. Expert Opinion on Drug Safety, 21(3), 373–384. https://doi.org/10.1080/14740338.2021.1965988

Fadzillah, S. N., Hernawati, D., & Putra, R. R. (2024). Analisis In Silico : Aktivitas Antiinflamasi dan Prediksi Toksisitas Senyawa Metabolit Sekunder Daun Ciplukan (Physalis peruviana L.). Bioscientist : Jurnal Ilmiah Biologi, 12(1), 517. https://doi.org/10.33394/bioscientist.v12i1.9592

Fengler, S., Kurkowsky, B., Kaushalya, S. K., Roth, W., Fava, E., & Denner, P. (2021). Human iPSC-derived brain endothelial microvessels in a multi-well format enable permeability screens of anti-inflammatory drugs. https://doi.org/10.1101/2021.05.03.442133

Fu, L., Shi, S., Yi, J., Wang, N., He, Y., Wu, Z., Peng, J., Deng, Y., Wang, W., Wu, C., Lyu, A., Zeng, X., Zhao, W., Hou, T., & Cao, D. (2024). ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Research, 52(W1), W422–W431. https://doi.org/10.1093/nar/gkae236

Gazzillo, E., Colarusso, E., Giordano, A., Chini, M. G., Potenza, M., Hofstetter, R. K., Iorizzi, M., Werz, O., Lauro, G., & Bifulco, G. (2024). Repositioning of Small Molecules through the Inverse Virtual Screening in silico Tool: Case of Benzothiazole‐Based Inhibitors of Soluble Epoxide Hydrolase (sEH). ChemPlusChem. https://doi.org/10.1002/cplu.202400234

Gil, T.-Y., Hong, C.-H., & An, H.-J. (2021). Anti-Inflammatory Effects of Ellagic Acid on Keratinocytes via MAPK and STAT Pathways. International Journal of Molecular Sciences, 22(3), 1277. https://doi.org/10.3390/ijms22031277

Gunarti, N. S., Ruswanto, R., Angelica, E. O., & Hidayah, H. (2024). Bioinformatics Studies of Flavonoid Derivatives Compound from Saga Rambat Leaves as an Antipyretic Candidate. Jurnal Kimia Sains Dan Aplikasi, 26(12), 466–476. https://doi.org/10.14710/jksa.26.12.466-476

Guzik, T. J., Nosalski, R., Maffia, P., & Drummond, G. R. (2024). Immune and inflammatory mechanisms in hypertension. Nature Reviews Cardiology, 21(6), 396–416. https://doi.org/10.1038/s41569-023-00964-1

Hanif, A. U., Lukis, P. A., & Fadlan, A. (2020). Pengaruh Minimisasi Energi MMFF94 dengan MarvinSketch dan Open Babel PyRx pada Penambatan Molekular Turunan Oksindola Tersubstitusi. ALCHEMY, 8(2), 33–40. https://doi.org/10.18860/al.v8i2.10481

Hestiningsih, T., Gassani, F. F., & K, T. (2022). Antiinflammation Activity of Duku Seed Extract Gel in Carragenan Induced Wistar White Rats. Sriwijaya Journal of Dentistry, 3(1), 6–14. https://doi.org/10.32539/sjd.v3i1.20

Ibrahim, Z. Y., Uzairu, A., Shallangwa, G. A., & Abechi, S. E. (2021). Pharmacokinetic predictions and docking studies of substituted aryl amine-based triazolopyrimidine designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH). Future Journal of Pharmaceutical Sciences, 7(1), 133. https://doi.org/10.1186/s43094-021-00288-2

Karim, B. K., Tsamarah, D. F., Zahira, A., Rosandi, N. F., Swarga, K. F., Aulifa, D. L., Elaine, A. A., & Sitinjak, B. D. P. (2024). Studi In-Silico Senyawa Aktif Daun Jambu Biji (Psidium guajava L.) sebagai Kandidat Obat Antikanker Payudara. Indonesian Journal of Biological Pharmacy, 3(3), 194. https://doi.org/10.24198/ijbp.v3i3.52060

Kumar, S., & Kim, M. (2021). SMPLIP-Score: predicting ligand binding affinity from simple and interpretable on-the-fly interaction fingerprint pattern descriptors. Journal of Cheminformatics, 13(1), 28. https://doi.org/10.1186/s13321-021-00507-1

Lazim, R., Suh, D., & Choi, S. (2020). Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems. International Journal of Molecular Sciences, 21(17), 6339. https://doi.org/10.3390/ijms21176339

Limbu, S., Glasgow, E., Block, T., & Dakshanamurthy, S. (2024). A Machine-Learning-Driven Pathophysiology-Based New Approach Method for the Dose-Dependent Assessment of Hazardous Chemical Mixtures and Experimental Validations. Toxics, 12(7), 481. https://doi.org/10.3390/toxics12070481

Lin, Z., Lin, C., Fu, C., Lu, H., Jin, H., Chen, Q., & Pan, J. (2020). The protective effect of Ellagic acid (EA) in osteoarthritis: An in vitro and in vivo study. Biomedicine & Pharmacotherapy, 125, 109845. https://doi.org/10.1016/j.biopha.2020.109845

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

Liu, K., & Kokubo, H. (2020). Prediction of ligand binding mode among multiple cross-docking poses by molecular dynamics simulations. Journal of Computer-Aided Molecular Design, 34, 1195–1205. https://doi.org/10.1007/s10822-020-00340-y

Maiolini, T. C. S., Nicácio, K. de J., Rosa, W., Miranda, D. de O., Santos, M. F. C., Bueno, P. C. P., Lago, J. H. G., Sartorelli, P., Dias, D. F., Chagas de Paula, D. A., & Soares, M. G. (2025). Potential anti-inflammatory biomarkers from Myrtaceae essential oils revealed by untargeted metabolomics. Natural Product Research, 39(4), 985–992. https://doi.org/10.1080/14786419.2023.2283758

Mayanti, T., Sinaga, S. E., & Supratman, U. (2022). Phytochemistry and biological activity of Lansium domesticum Corr. species: a review. Journal of Pharmacy and Pharmacology, 74(11), 1568–1587. https://doi.org/10.1093/jpp/rgac057

Mazzini, S., Musso, L., Dallavalle, S., & Artali, R. (2020). Putative SARS-CoV-2 Mpro Inhibitors from an In-House Library of Natural and Nature-Inspired Products: A Virtual Screening and Molecular Docking Study. Molecules, 25(16), 3745. https://doi.org/10.3390/molecules25163745

Murphy, M. T., Qin, X., Kaul, S., Barrientos, G., Zou, Z., Mathias, C. B., Thomas, D., & Bose, D. D. (2020). The polyphenol ellagic acid exerts anti-inflammatory actions via disruption of store-operated calcium entry (SOCE) pathway activators and coupling mediators. European Journal of Pharmacology, 875, 173036. https://doi.org/10.1016/j.ejphar.2020.173036

Ossowicz-Rupniewska, P., Klebeko, J., Świątek, E., Szachnowska, J., Janus, E., Rangelov, M., Todorova, N., Taneva, S. G., Krachmarova, E., & Guncheva, M. (2022). Binding behavior of ibuprofen-based ionic liquids with bovine serum albumin: Thermodynamic and molecular modeling studies. Journal of Molecular Liquids, 360, 119367. https://doi.org/10.1016/j.molliq.2022.119367

Panchal, N. K., & Prince Sabina, E. (2023). Non-steroidal anti-inflammatory drugs (NSAIDs): A current insight into its molecular mechanism eliciting organ toxicities. Food and Chemical Toxicology, 172, 113598. https://doi.org/10.1016/j.fct.2022.113598

Pirie, R., Stanway-Gordon, H. A., Stewart, H. L., Wilson, K. L., Patton, S., Tyerman, J., Cole, D. J., Fowler, K., & Waring, M. J. (2024). An analysis of the physicochemical properties of oral drugs from 2000 to 2022. RSC Medicinal Chemistry, 15(9), 3125–3132. https://doi.org/10.1039/D4MD00160E

Prata, C., Angeloni, C., & Maraldi, T. (2024). Strategies to Counteract Oxidative Stress and Inflammation in Chronic-Degenerative Diseases 2.0. International Journal of Molecular Sciences, 25(9), 5026. https://doi.org/10.3390/ijms25095026

Pyka-Pająk, A., Parys, W., & Dołowy, M. (2019). Comparison of the Utility of RP-TLC Technique and Different Computational Methods to Assess the Lipophilicity of Selected Antiparasitic, Antihypertensive, and Anti-inflammatory Drugs. Molecules, 24(17), 3187. https://doi.org/10.3390/molecules24173187

Rai, M., Singh, A. V., Paudel, N., Kanase, A., Falletta, E., Kerkar, P., Heyda, J., Barghash, R. F., Pratap Singh, S., & Soos, M. (2023). Herbal concoction Unveiled: A computational analysis of phytochemicals’ pharmacokinetic and toxicological profiles using novel approach methodologies (NAMs). Current Research in Toxicology, 5, 100118. https://doi.org/10.1016/j.crtox.2023.100118

Rajendran, P., Chen, Y., Chen, Y., Chung, L., Tamilselvi, S., Shen, C., Day, C. H., Chen, R., Viswanadha, V. P., Kuo, W., & Huang, C. (2018). The multifaceted link between inflammation and human diseases. Journal of Cellular Physiology, 233(9), 6458–6471. https://doi.org/10.1002/jcp.26479

Ramírez, D., & Caballero, J. (2018). Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?

Molecules, 23(5), 1038. https://doi.org/10.3390/molecules23051038

Rana, T. (2022). Influence and Implications of the Molecular Paradigm of Nitric Oxide Underlying Inflammatory Reactions of the Gastrointestinal Tract of Dog: A Major Hallmark of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 28(8), 1280–1288. https://doi.org/10.1093/ibd/izac017

Riyadi, P., Romadhon, Anggo, A., Suharto, S., Tanod, W., & Aryani, A. (2021). Anti-Inflammatory Potential from Tilapia (Oreochromis niloticus) Viscera Hydrolysate with Bioinformatics Analysis (Prediction of Activity Spectra for Substances – PASS). IOP Conference Series: Earth and Environmental Science, 750(1), 012044. https://doi.org/10.1088/1755-1315/750/1/012044

Rudichenko, V., & Sokolenko, A. (2023). Importance of Prophylactic Strategies in Prevention of Gastrointestinal Injuries by Nonsteroidal Antiinflammatory Drugs (Сlinical case). Family Medicine. European Practices, 4, 83–88. https://doi.org/10.30841/2786-720X.4.2023.297048

Salo-Ahen, O. M. H., Alanko, I., Bhadane, R., Bonvin, A. M. J. J., Honorato, R. V., Hossain, S., Juffer, A. H., Kabedev, A., Lahtela-Kakkonen, M., Larsen, A. S., Lescrinier, E., Marimuthu, P., Mirza, M. U., Mustafa, G., Nunes-Alves, A., Pantsar, T., Saadabadi, A., Singaravelu, K., & Vanmeert, M. (2020). Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes, 9(1), 71. https://doi.org/10.3390/pr9010071

Sari, I. W., Junaidin, J., & Pratiwi, D. (2020). Studi Molecular Docking Senyawa Flavonoid dari Herba Kumis Kucing (Orthosiphon stamineus B.) pada Reseptor α-Glukosidase sebagai Antidiabetes Tipe 2. Jurnal Farmagazine, 7(2), 54. https://doi.org/10.47653/farm.v7i2.194

Shaker, B., Ahmad, S., Lee, J., Jung, C., & Na, D. (2021). In silico methods and tools for drug discovery. Computers in Biology and Medicine, 137, 104851. https://doi.org/10.1016/j.compbiomed.2021.104851

Sheng, Y., Zhong, L., Guo, D., Lau, G., & Feng, C. (2015). Insight into structural rearrangements and interdomain interactions related to electron transfer between flavin mononucleotide and heme in nitric oxide synthase: A molecular dynamics study. Journal of Inorganic Biochemistry, 153, 186–196. https://doi.org/10.1016/j.jinorgbio.2015.08.006

Smith, D. A., Beaumont, K., Maurer, T. S., & Di, L. (2015). Volume of Distribution in Drug Design. Journal of Medicinal Chemistry, 58(15), 5691–5698. https://doi.org/10.1021/acs.jmedchem.5b00201

Souza, M. A., Guzatti, J. G. G., Martello, R. H., Schindler, M. S. Z., Calisto, J. F. F., Morgan, L. V., Aguiar, G. P. S., Locateli, G., Scapinello, J., Müller, L. G., Oliveira, J. V., & Dal Magro, J. (2020). Supercritical CO2 extraction of Aloysia gratissima leaves and evaluation of anti-inflammatory activity. The Journal of Supercritical Fluids, 159, 104753. https://doi.org/10.1016/j.supflu.2020.104753

Sulistyowaty, M. I., Widyowati, R., Putra, G. S., Budiati, T., & Matsunami, K. (2021). Synthesis, ADMET predictions, molecular docking studies, and in-vitro anticancer activity of some benzoxazines against A549 human lung cancer cells. Journal of Basic and Clinical Physiology and Pharmacology, 32(4), 385–392. https://doi.org/10.1515/jbcpp-2020-0433

Sun, D., Gao, W., Hu, H., & Zhou, S. (2022a). Why 90% of clinical drug development fails and how to improve it? Acta Pharmaceutica Sinica B, 12(7), 3049–3062. https://doi.org/10.1016/j.apsb.2022.02.002

Sun, D., Gao, W., Hu, H., & Zhou, S. (2022b). Why 90% of clinical drug development fails and how to improve it? Acta Pharmaceutica Sinica B, 12(7), 3049–3062. https://doi.org/10.1016/j.apsb.2022.02.002

Takahashi, M., Chen, S., Matsui, H., Morimoto, N., & Ikemoto, Y. (2022). Van der Waals interactions regulating the hydration of 2-methacryloyloxyethyl phosphorylcholine, the constructing monomer of biocompatible polymers. Scientific Reports, 12(1), 20393. https://doi.org/10.1038/s41598-022-24841-y

Techavuthiporn, C. (2018). Langsat— Lansium domesticum. In Exotic Fruits (pp. 279–283). Elsevier. https://doi.org/10.1016/B978-0-12-803138-4.00036-8

Thangavel, N., & Albratty, M. (2022). Pharmacophore model-aided virtual screening combined with comparative molecular docking and molecular dynamics for identification of marine natural products as SARS-CoV-2 papain-like protease inhibitors. Arabian Journal of Chemistry, 15(12), 104334. https://doi.org/10.1016/j.arabjc.2022.104334

Tonk, R., Tewatia, S., Majeed, S., & Dagar, M. (2020). Non-steroidal Anti-inflammatory Drugs (NSAIDS): Chemistry, Mechanism and their Adverse events. American Journal of PharmTech Research, 8(5), 43–49. https://doi.org/10.46624/ajphr.2020.v8.i5.004

Uzzaman, M., Fatema, K., Akhter, S., Hossain, Md. R., Akter, N., Tasnuva, S., Jahan, S., Hasan, Md. K., Shimu, Mst. S. S., Hossain, Md. K., & Afrin, Mst. F. (2023). Medicinal and toxicological investigation of some common NSAIDs; A computer-aided drug design approach. Journal of Molecular Structure, 1292, 136124. https://doi.org/10.1016/j.molstruc.2023.136124

Vidal-Limon, A., Aguilar-Toalá, J. E., & Liceaga, A. M. (2022). Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. Journal of Agricultural and Food Chemistry, 70(4), 934–943. https://doi.org/10.1021/acs.jafc.1c06110

Wang, Z., Qi, F., Luo, H., Xu, G., & Wang, D. (2022). Inflammatory Microenvironment of Skin Wounds. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.789274

Waters, N. J., & Lombardo, F. (2010). Use of the Øie-Tozer Model in Understanding Mechanisms and Determinants of Drug Distribution. Drug Metabolism and Disposition, 38(7), 1159–1165. https://doi.org/10.1124/dmd.110.032458

Yang, J., Choi, W.-S., Kim, J.-W., Lee, S.-S., & Park, M.-J. (2019). Anti-Inflammatory Effect of Essential Oils Extracted from Wood of Four Coniferous Tree Species. Journal of the Korean Wood Science and Technology, 47(6), 674–691. https://doi.org/10.5658/WOOD.2019.47.6.674

Zhao, M., Lin, Y., Zeng, Y., Lv, Z., Liang, J., Tang, P., Zhen, X., & Han, L. (2025). Biomimetic membrane-coated nanoparticles specially permeate the inflammatory blood-brain barrier to deliver plasmin therapy for brain metastases. Journal of Controlled Release, 378, 763–775. https://doi.org/10.1016/j.jconrel.2024.12.066




DOI: http://dx.doi.org/10.30821/biolokus.v8i2.4731

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Biolokus : Jurnal Penelitian Pendidikan Biologi dan Biologi

indexed by :