ANALISIS KARAKTERISTIK SOAL KEMAMPUAN KONEKSI MATEMATIKA PENSKORAN POLITIMUS

Rosid Bahar, Heri Retnawati

Abstract


The objectives of this study were 1) to determine the fit of the model on the polytomic scoring, and 2) to determine the quality of the mathematical connection instrument. This study uses a quantitative approach with exploratory descriptive research. The research subjects were the responses of the students of class VIII MTs Fadris Tasikmalaya Regency with a total of 135 participants. The data collection technique used an instrument of mathematical connection ability with a total of 5 description questions with a polytomus score. The data analysis used the Generalized Artificial Credit Model (GPCM) approach with the help of the R Studio software program with the irtGUI package. Based on the results of the analysis, this instrument has met the IRT assumption test, namely unidimensionality and local independence. Analysis with the R studio program also resulted in a model fit with the GPCM approach. The results of the analysis using the GPCM approach show that 3 of the 5 description questions presented have a quality that is suitable for use, because they meet the validity and reliability standards based on item fit and item information functions.

Full Text:

PDF

References


Allen, M. J., & Yen, W. M. (2001). Introduction to measurement theory. California: Waveland Press, Inc.

Azwar, S. (2016). Dasar-dasar psikometri. Yogyakarta: Pustaka Pelajar.

Baiduri, Putri, O. R. U., & Alfani, I. (2020). Mathematical connection process of students with high mathematics ability in solving PISA problems. European Journal of Educational Research, 9(4), 1527–1537. https://doi.org/10.12973/EU-JER.9.4.1527

DeMars, C. (2010). Item response theory. Oxford University Press.

Desjardins, C. D., & Bulut, O. (2018). Handbook of educational measurement and psychometrics using R. CRC Press.

García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227–252. https://doi.org/10.1080/0020739X.2017.1355994

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados. Bookman editora.

Hambleton, R. K., Shavelson, R. J., Webb, N. M., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. Sage.

Hermawan, D., & Prabawanto, S. (2015). Pengaruh Penerapan Model Pembelajaran Problem Based Learning Berbantuan Media Teknologi Informasi dan Komunikasi Terhadap Kemampuan Koneksi Matematis Siswa Sekolah Dasar. EduHumaniora | Jurnal Pendidikan Dasar Kampus Cibiru, 7(1), 1–9. https://doi.org/10.17509/eh.v7i1.2791

Istiyono, E. (2018). Pengembangan Instrumen Penilaian dan Analisis Hasil Belajar Fisika dengan Teori Tes Klasik dan Modern. UNY Press Yogyakarta.

Jailani, Retnawati, H., Apino, E., & Santoso, A. (2020). High school students’ difficulties in making mathematical connections when solving problems. International Journal of Learning, Teaching and Educational Research, 19(8), 255–277. https://doi.org/10.26803/ijlter.19.8.14

Kenedi, A. K., Helsa, Y., Ariani, Y., Zainil, M., & Hendri, S. (2019). Mathematical Connection of Elementary School Students to Solve Mathematical Problems. Journal on Mathematics Education, 10(1), 69–80. https://doi.org/10.22342/jme.10.1.5416.69-80

Manalu, A. C. S., Septiahani, A., Permaganti, B., Melisari, M., Jumiati, Y., & Hidayat, W. (2020). Analisis kemampuan koneksi matematis siswa SMK Pada materi fungsi kelas XI. Jurnal Cendekia : Jurnal Pendidikan Matematika, 4(1), 254–260. https://doi.org/10.31004/cendekia.v4i1.198

Mardapi, D. (2016). Pengukuran penilaian dan evaluasi pendidikan. Yogyakarta: Nuha Medika, 45.

National Council of Teachers of Mathematics. (2000). Standards for teaching and learning mathematics. Reston, VA: Reston, VA : NCTM. Diambil dari https://www.nctm.org/Handlers/AttachmentHandler.ashx?attachmentID=YrwYUOB4xnA=

Nugraha, A. A. (2018). Analisis Kemampuan Koneksi Matematis Siswa SMP pada Materi Sistem Persamaan Linear Dua Variabel (SPLDV). Suska Journal of Mathematics Education, 4(1), 59–64. https://doi.org/10.24014/sjme.v3i2.3897

Ramesh, M., Sathiyaseelan, S., & Ajit, I. (2019). The portrayal of great mathematicians in movies: A review. International Journal of Recent Technology and Engineering, 7(5C), 182–185. Diambil dari https://www.ijrte.org/download/volume-7-issue-5c/

Retnawati, H. (2014). Teori respons butir dan penerapannya: Untuk peneliti, praktisi pengukuran dan pengujian, mahasiswa pascasarjana. Yogyakarta: Nuha Medika.

Retnawati, H. (2016). Validitas reliabilitas dan karakteristik butir. Yogyakarta: Parama Publishing.

Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & Moll, V. F. (2020). A new view about connections: the mathematical connections established by a teacher when teaching the derivative. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2020.1799254

Saepuzaman, D., Istiyono, E., Haryanto, H., Retnawati, H., & Yustiandi, Y. (2021). Analisis karakteristik butir soal fisika dengan pendekatan IRT penskoran dikotomus dan politomus. Radiasi: Jurnal Berkala Pendidikan Fisika, 14(2), 62–75. https://doi.org/https://doi.org/10.37729/radiasi.v14i2.1200

Saminanto, & Kartono. (2015). Analysis of mathematical connection ability in linear equation with one variable based on connectivity theory. International Journal of Education and Research, 3(4), 259–270. Diambil dari https://www.ijern.com/April-2015.php

Sudaryono. (2011). Implementasi teori responsi butir (Item Response Theory) pada penilaian hasil belajar akhir di sekolah. Jurnal Pendidikan dan Kebudayaan, 17(6), 719. https://doi.org/10.24832/jpnk.v17i6.62

Swastika, G. T., & Narendra, R. (2019). ARIAS learning model based on a contextual approach to increase the mathematical connection capacity. JIPM (Jurnal Ilmiah Pendidikan Matematika), 7(2), 104. https://doi.org/10.25273/jipm.v7i2.2984

Yaniawati, R. P., Indrawan, R., & Setiawan, G. (2019). Core model on improving mathematical communication and connection, analysis of students’ mathematical disposition. International Journal of Instruction, 12(4), 639–654. https://doi.org/10.29333/iji.2019.12441a

Yildiz, H. (2021). IRTGUI: An R Package for Unidimensional Item Response Theory Analysis With a Graphical User Interface. Applied Psychological Measurement, 45(7–8), 551–552. https://doi.org/10.1177/01466216211040532

Zanon, C., Hutz, C. S., Yoo, H., & Hambleton, R. K. (2016). An application of item response theory to psychological test development. Psicologia: Reflexão e Crítica, 29(1), 18. https://doi.org/10.1186/s41155-016-0040-x

Zengin, Y. (2019). Development of mathematical connection skills in a dynamic learning environment. Education and Information Technologies, 24(3), 2175–2194. https://doi.org/10.1007/s10639-019-09870-x




DOI: http://dx.doi.org/10.30829/tar.v29i2.1650

Refbacks

  • There are currently no refbacks.


CURRENT INDEXING
 

 

Creative Commons License

Jurnal Tarbiyah by UIN Sumatera Utara Medan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at http://jurnaltarbiyah.uinsu.ac.id/index.php/tarbiyah.
Permissions beyond the scope of this license may be available at http://jurnaltarbiyah.uinsu.ac.id/index.php/tarbiyah/about/submissions#copyrightNotice.