In silico exploration of the potential barcode DNA in Anopheles sp., a malarian vector from Indonesia

Syubbanul Wathon, Devi Astikaningrum, Naura Paramitha Cindy Ardyah, Rike Oktarianti, Kartika Senjarini

Abstract


Malaria is an infectious disease caused by Plasmodium and transmitted to humans through the Anopheles mosquito vector. The large diversity of Anopheles in Indonesia, which consists of similar complex species, makes it difficult to identify species based on morphological characteristics. Therefore, it is necessary to have another approach to identifying species based on molecular characteristics using DNA molecular markers. This approach becomes important as a basis for vector-based malaria control efforts. This research aims to explore potential DNA barcodes based on in silico studies as a reference for DNA barcoding analysis of Anopheles species in Indonesia. The data sequences of CO1 and ITS2 from Anopheles sp. were collected on the NCBI database. The sequence alignment was performed using CLUSTALX2. The construction of a phylogenetic tree was carried out using MEGA XI. Data analysis was performed by observing the construction of phylogenetic trees, bootstrap scores, and genetic distance. The data sequence in NCBI shows that 10 species of the genus Anopheles as malaria vectors have been studied in Indonesia. Sequence alignment of the 10 species based on CO1 and ITS2 markers showed that ITS2 markers had higher genetic variation than CO1. Therefore, the ITS2 sequence has the potential to be a DNA barcode for the molecular identification of Anopheles.

Keywords


Anopheles; barcode; CO1; ITS2; malaria

Full Text:

PDF

References


Abinawanto, Zulistiana, T., Lestari, R., Dwiranti, A., & Bowolaksono, A. (2021). The genetic diversity of ayam ketawa (Gallus gallus domesticus, Linneaus, 1758) in Bangkalan District, Madura Island, Indonesia. Biodiversitas, 22(6), 3145-3155. https://doi.org/10.13057/biodiv/d220617

Anzani, A. N. U. R., Martiansyah, I., & Yuliani, N. I. A. (2021). Studi In Silico DNA barcoding pada bunga soka (Ixora). Prosiding Biologi Achieving the Sustainable Development Goals

with Biodiversity in Confronting Climate Change, 7(1), 168–177. https://doi.org/10.24252/psb.v7i1.23693

Astuti, E. P., Ipa, M., Prasetyowati, H., Fuadzy, H., & Dhewantara, P. W. (2016). Kapasitas Vektor dan Laju Inokulasi Entomologis Anopheles vagus dari Wilayah Endemis Malaria di Provinsi Banten. Vektora : Jurnal Vektor Dan Reservoir Penyakit, 8(1), 23–30. https://doi.org/10.22435/vk.v8i1.5089.23-30

Bachry, S., Solihin, D. D., Gustiano, R., Soewardi, K., & Butet, N. A. (2020). Filogeni Populasi Haliotis Squamata Reeve, 1846 dari Pantai Selatan Pulau Jawa dan Bali Berdasarkan Sekuen Cytochrome B Dna Mitokondria. Jurnal Ilmu dan Teknologi Kelautan Tropis, 12(2), 583-593. https://doi.org/10.29244/jitkt.v12i2.30691

Batovska, J., Cogan, N. O. I., Lynch, S. E., & Blacket, M. J. (2017). Using next-generation sequencing for DNA barcoding: Capturing allelic variation in ITS2. G3: Genes, Genomes, Genetics, 7(1), 19–29. https://doi.org/10.1534/g3.116.036145

Beebe, N. W. (2018). DNA barcoding mosquitoes: Advice for potential prospectors. Parasitology, 145(5), 622–633. https://doi.org/10.1017/S0031182018000343

Brosseau L., Chanya, U., Chutipong, S., Theeraphap, C., Michael, J. B., Atiporn, S., & Sylvie, M. (2019). A multiplex PCR assay for the identifcation of five species of the Anopheles barbirostris complex in Thailand. Parasites Vectors, 12(223), 1-10. https://doi.org/10.1186/s13071-019-3494-8

Butet, N. A., I. A. B. P. Dewi, Z. Zairion, & A. A. Hakim. (2019). Species validation of mole

crabs based on molecular marker of 16s rRNA from Bantul and Purworejo waters. Journal of Tropical Fisheries Management, 3(2), 28-35. https://doi.org/10.29244/jppt.v3i2.30434

Calonje, M., Martín-Bravo, S., Dobeš, C., Gong, W., Jordon-Thaden, I., Kiefer, C., Kiefer, M., Paule, J., Schmickl, R., & Koch, M. A. (2009). Non-coding nuclear DNA markers in phylogenetic reconstruction. Plant Systematics and Evolution, 282(3–4), 257–280. https://doi.org/10.1007/s00606-008-0031-1

Carter, T. E., Yared, S., Hansel, S., Lopez, K., & Janies, D. (2019). Sequence-based identification of Anopheles species in eastern Ethiopia. Malaria Journal, 18(1), 1–7. https://doi.org/10.1186/s12936-019-2768-0

Cooper, R. D., Edstein, M. D., Frances, S. P., & Beebe, N. W. (2010). Malaria vectors of Timor-Leste. Malaria Journal, 9(1), 1–11. https://doi.org/10.1186/1475-2875-9-40

Da Fonseska R. R., Johnson, W. E., Brien, S. J., Ramos, M. J., dan Antunes, A. (2008). The adaptive evolution of the mammalian mitochondria genome, BMC Genomic, 9(119), 1-22. https://doi.org/10.1186/1471-2164-9-119

Dailami, M., I Made, A., Mirza, D. K., & Dodi, S. (2016). Phylogenetic Analysis of Cytochrome Oxidase I from Buduk Toads Duttaphrynus melanostictus and Phrynoidis asper from Bogor. Current Biochemistry, 3(2), 54-65, ISSN 2355 7877.

Davidson, J. R., Wahid, I., Sudirman, R., Small, S. T., Hendershot, A. L., Baskin, R. N., ... & Lobo, N. F. (2020). Molecular analysis reveals a high diversity of Anopheles species in Karama, West Sulawesi, Indonesia. Parasites & Vectors, 13(1), 1-11. https://doi.org/10.1186/s13071-020-04252-6

Debora, J., Rinonce, H. T., Pudjohartono, M. F., Astari, P., Winata, M. G., & Kasim, F. (2018). Prevalensi malaria di Asmat, Papua: Gambaran situasi terkini di daerah endemik tinggi. Journal of Community Empowerment for Health, 1(1), 11–19. https://doi.org/10.22146/jcoemph.38309

Duarsa, A. B. S. (2008). Dampak Pemanasan Global Terhadap Risiko Terjadinya Malaria. Jurnal Kesehatan Masyarakat Andalas, 2(2), 181. https://doi.org/10.24893/jkma.2.2.181-185.2008

Duver (Dunia Vektor dan Reservoir. (2017) Peta Sebaran Vektor Malaria. Retrieved from http://www.b2p2vrp.litbang.kemkes.go.id/duver/duo-776-peta-sebaran-vektor-malaria.html.

Ekasari, T. W. D., Retnoningsih A., & Widianti T. 2012. Analisis Keanekaragaman Kultivar Pisang Menggunakan Penanda PCR-RFLP pada Internal Transcribed Spacer (ITS) DNA Ribosom. J. MIPA, 35, 21–30. https://doi.org/10.15294/ijmns.v35i1.2093

Fang, Y., Shi, W. Q., & Zhang, Y. (2017). Molecular phylogeny of Anopheles hyrcanus group members based on ITS2 rDNA. Parasites and Vectors, 10(1), 1–11. https://doi.org/10.1186/s13071-017-2351-x

Foley, D. H., Bryan, J. H., Yeates, D., & Saul, A. (1998). Evolution and Systematics of Anopheles:Insights from a Molecular Phylogeny of Australasian Mosquitoes. Molecular Phylogenetics and Evolution, 9(2), 262–275. https://doi.org/10.1006/mpev.1997.0457

Foley, D. H., Wilkerson, R. C., Cooper, R. D., Volovsek, M. E., & Bryan, J. H. (2007). A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex. Molecular phylogenetics and evolution, 43(1), 283-297. https://doi.org/10.1016/j.ympev.2006.10.008

Geller, J., Meyer, C., Parker, M., & Hawk, H. (2013). Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources, 13, 851–861. https://doi.org/10.1111/1755-0998.12138

Handayani, R. S., & Ismadi. (2017). Analisis Keragaman Kualitas Buah Durian Unggulan (Durio zibethinus) Aceh Utara. Jurnal Hortikultura Indonesia, 8(3), 147. https://doi.org/10.29244/jhi.8.3.147-154

Hang, J. W., Tukijan, F., Lee, E. Q. H., Abdeen, S. R., Aniweh, Y., & Malleret, B. (2021). Zoonotic Malaria: Non-Laverania Plasmodium Biology and Invasion Mechanisms. Pathogens, 10(889), 1-22. https://doi.org/10.3390/pathogens10070889

Harbach, R. E. (2013). The Phylogeny and Classification of Anopheles. Anopheles Mosquitoes- New Insights into Malaria Vectors, June. https://doi.org/10.5772/54695

Hartati, S., Wiyono, S., Hidayat, S. H., & Sinaga, M. S. (2021). Identifikasi Isolat Khamir Berpotensi sebagai Agens Antagonis dan Uji Produksi Toksin Hemolisin. Agrikultura, 32(2), 190-198. https://doi.org/10.24198/agrikultura.v32i2.33849

Hasanah, L. N. U., Masruroh, D., Wahyuni, I., Oktarianti, R., Wathon, S., Labes, A., Sulistyaningsih, E., & Senjarini, K. (2022). Internal transcribed spacer 2 (ITS2) based molecular identification of malaria vectors from Bangsring Banyuwangi-Indonesia. Biotechnol, 30(3), 57-68. https://doi.org/10.35118/apjmbb.2022.030.3.06

Hebert, P. D. N., Ratnasingham, S., & DeWaard, J. R. (2003). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270(SUPPL. 1), 96–99. https://doi.org/10.1098/rsbl.2003.0025

Hempolchom, C., Otsuka, Y., Baimai, V., Thongsahuan, S., Saeung, A., & Taai, K. (2013). Development of a multiplex PCR assay for the identifcation of eight species

members of the Thai Hyrcanus Group (Diptera: Culicidae). Appl Entomol Zool, 48:469–76. https://doi.org/10.1007/s13355-013-0207-1

Hoggart, M., Vesty, A., Wong, G., Montgomery, J. M., Fourie, C., Douglas, R. G., ... & Taylor, M. W. (2018). Characterizing the human mycobiota: a comparison of small subunit rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Frontiers in microbiology, 9, 2208. https://doi.org/10.3389/fmicb.2018.02208

Jannah, M., & Rahayu, D. A. (2019). Dna Barcode Hewan Dan Tumbuhan Indonesia. Jakarta: Yayasan Inspirasi Ide Berdaya. https://doi.org/10.31237/osf.io/2483a

Jatuwattana, W., Saeung, A., Taai, K., Srisuka, W., Thongsahuan, S., Aupalee, K., ... & Maleewong, W. (2020). Systematic studies of Anopheles (Cellia) kochi (Diptera: Culicidae): Morphology, cytogenetics, cross-mating experiments, molecular evidence and susceptibility level to infection with nocturnally subperiodic Brugia malayi. Acta tropica, 205, 105300. https://doi.org/10.1016/j.actatropica.2019.105300

Kementrian Kesehatan Republik Indonesia. (2020). Profil Kesehatan Indonesia Tahun 2019. Kementrian Kesehatan RI, Jakarta.

Kusuma, R. O., Dadiono, M. S., Kusuma, B., & Syakuri, H. (2021). Keragaman Genetik Ikan Uceng (Nemacheilus) di Sungai Wilayah Banyumas Berdasar Sekuen Gen Cytochrome Oxidase Subunit I (COI). Jurnal Perikanan, 23(2), 89-94. https://doi.org/10.22146/jfs.61167

Lemoine, F., Domelevo Entfellner, J. B., Wilkinson, E., Correia, D., Dávila Felipe, M., De Oliveira, T., & Gascuel, O. (2018). Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature, 556(7702), 452-456. https://doi.org/10.1038/s41586-018-0043-0

Maulid, D. Y. M., Nurilmala, M., Nurjanah, & Maduppa, H. (2016). Karakteristik Molekuler Cytochrome B untuk DNA Barcoding Ikan Tenggiri. Jurnal Pengolahan Hasil Perikanan Indonesia, 19(1), 9-16. https://doi.org/10.17844/jphpi.v19i1.11686

Meilana, L. Yusli, W., Butet. Nurlisa, A., & Majariana, K. (2016). Karakter morfologi dan identifikasi molekuler dengan marka gen co1 pada mimi (Tachpleus gigas) di perairan utara pulau Jawa. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 8(1), 145–158. https://doi.org/10.29244/jitkt.v8i1.12651

Muhajirah E., Kamalb, M. M., Butetb, N. A., & Wibowoc, Arif. (2021). Keragaman genetik populasi giant Snakehead (Channa micropeltes) menggunakan penanda Random Amplified Polymorphic DNA di perairan Taman Nasional Sebangau, Kalimantan Tengah. Journal of Natural Resources and Environmental Management, 11(1), 141-151. https://doi.org/10.29244/jpsl.11.1.141-151

Norris, L. C., & Norris, D. E. (2015). Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. Journal of Vector Ecology, 40(1), 16–27. https://doi.org/10.1111/jvec.12128

Oliart, A. C., Garces, S. M. O., & Paniagua, L. L. (2021). Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): do morphological data support molecular evidence?. Journal of Mammalogy, 102(1), 54–68. https://doi.org/10.1093/jmammal/gyaa116

Oshaghi, M. A., Shemshad, K., Yaghobi-Ershadi, M. R., Vatandosst, H., Abaie, M. R., Zare, Z., & Amani, H. (2007). Ribosomal DNA-ITS2 genotypes of the malaria vector Anopheles superpictus (Diptera: Culicidae) from Iran. Acta Medica Iranica, 45(4), 257–262. https://acta.tums.ac.ir/index.php/acta/article/view/3282

Perwitasari D. A. G., Siti R., Tri R., Bambang S., & Mukhamad S. (2020). DNA barcoding anggrek obat Dendrobium discolor lindl. tanimbar menggunakan gen rbcL dan ITS. Buletin Penelitian Tanaman Rempah dan Obat, 31 (1), 8- 20. https://doi.org/10.21082/bullittro.v31n1.2020.8-20

Philips, J. D., Gills, D. J., & Hanner, R. H. (2018). Incomplete estimates of genetic diversity within species: Implications for DNA barcoding. Ecology and Evolution, 9(5), 2996-3000. https://doi.org/10.1002/ece3.4757

Poczai, P., & Hyvönen, J. (2010). Nuclear ribosomal spacer regions in plant phylogenetics: Problems and prospects. Molecular Biology Reports, 37(4), 1897–1912. https://doi.org/10.1007/s11033-009-9630-3

Porter, C. H., & Collins, F. H. 1991. Species-diagnostic Differences in A Ribosomal DNA Internal Transcribed Spacer from The Sibling Species Anopheles freeborni and Anopheles hermsi (Diptera: Culicidae). The American journal of tropical medicine and hygiene 45(2): 271-279. https://doi.org/10.4269/ajtmh.1991.45.271

Prasetya, H., & Saefuddin, A. (2011). Performance Comparison Between Kimura 2-Parameters and Jukes-Cantor Model In Constructing Phylogenetic Tree Of Neighbour Joining. In Forum Statistika Dan Komputasi, 16(1).

Rizal, S., Dewi Sukma, Roberdi Siberakuno, Tony Liwang, & Sudarsono. (2020). Isolasi dan Karakterisasi Potongan DNA Gen Sterol Metiltransferase 1 (SMT1) Asal Kelapa Sawit. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 48(3), 348–354. https://doi.org/10.24831/jai.v48i3.32205

Sahara A., Priyowidodo, D., Nugraheni, Y. R., Prastowo, J. (2018). Identifikasi Molekuler Caplak Sapi dari Berbagai Wilayah di Indonesia. Prosiding Seminar Nasional Sains, Teknologi dan Analisis Ke-1, Universitas Gadjah Mada.

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425.

Saleky, D., Leatemia, S. P., Pattiasina, T. F., Isma, I., Pangaribuan, R. D., Welliken, M. A., ... & Dailami, M. (2020). Analisis Pola Pertumbuhan dan Pendekatan DNA Barcoding untuk Identifikasi Turbo stenogyrus P. Fischer, 1873 (Mollusca: Gastropoda). Biotropika: Journal of Tropical Biology, 8(2), 79-86. https://doi.org/10.21776/ub.biotropika.2020.008.02.03

Sallum, M. A. M., Foster, P. G., Li, C., Sithiprasasna, R., & Wilkerson, R. C. (2007). Phylogeny of the Leucosphyrus Group of Anopheles (Cellia)(Diptera: Culicidae) based on mitochondrial gene sequences. Annals of the Entomological Society of America, 100(1), 27-35. https://doi.org/10.1603/0013-8746(2007)100[27:POTLGO]2.0.CO;2

Sari, S. Y. P., Ambarwati, R., & Rahayu, D. A. (2021). Molecular characteristics of Donax faba (Bivalvia: Donacidae) from Nepa Beach, Madura, based on cytochrome oxidase subunit I gene sequences. Aquaculture, Aquarium, Conservation & Legislation Bioflux, 14(4), 2416-2426. http://www.bioflux.com.ro/aacl

Sato, S. (2021). Correction to: Plasmodium a brief introduction to the parasites causing human malaria and their basic biology (Journal of Physiological Anthropology, (2021), 40, 1, (1), 10.1186/s40101-020-00251-9). Journal of Physiological Anthropology, 40(1), 1–13. https://doi.org/10.1186/s40101-021-00254-0

Sindhania, A., Das, M. K., Sharma, G., Surendran, S. N., Kaushal, B. R., Lohani, H. P., & Singh, O. P. (2020). Molecular forms of Anopheles subpictus and Anopheles sundaicus in the Indian subcontinent. Malaria Journal, 19(1), 1–17. https://doi.org/10.1186/s12936-020-03492-2

Sinka M. E., Michael J. B., Sylvie M., Yasmin R.P, Theeraphap C., Maureen C., Charles M.M., Janet H., Anand P.P., William H. T., Peter W. G.,

Caroline W. K., Thomas R. B., Ralph E. H., & Simon I. H. (2012). A global map of dominant malaria vectors. Parasites & Vectors, 5(69), 1-11. https://doi.org/10.1186/1756-3305-5-69

Subari, A., Razak, A., & Sumarmin, R. (2021). Phylogenetic Analysis of Rasbora spp. Based on the Mitochondrial DNA COI gene in Harapan Forest. Jurnal Biologi Tropis, 21(1), 89–94. https://doi.org/10.29303/jbt.v21i1.2351

Sum, J. S., Lee, W. C., Amir, A., Braima, K. A., Jeffery, J., Abdul-Aziz, N. M., Fong, M. Y., & Lau, Y. L. (2014). Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA. Parasites and Vectors, 7(1), 1–8. https://doi.org/10.1186/1756-3305-7-309

Wahyuni, I., Senjarini, K., Oktarianti, R., Wathon, S., & Nur Uswatul Hasanah, L. (2018). Identifikasi Morfologi Spesies Sibling Anopheles vagus vagus dan Anopheles vagus limosus Asal Desa Bangsring, Banyuwangi. BIOSFER : Jurnal Biologi Dan Pendidikan Biologi, 3(1), 27-31. https://doi.org/10.23969/biosfer.v3i1.1585

Weeraratne T. C., Surendran, S. N. & Karunaratnel, S. H. P. P. (2018). DNA barcoding of morphologically characterized mosquitoes belonging to the subfamily Culicinae from Sri Lanka. Parasites & Vectors, 11, 1-10. https://doi.org/10.1186/s13071-018-2810-z

Widyastuti, U., Garjito, T. A., & Widiarti, W. (2016). Diversitas Genetik Anopheles balabacensis, Baisas di Berbagai Daerah Indonesia Berdasarkan Sekuen Gen ITS 2 DNA Ribosom. Indonesian Bulletin of Health Research, 44(1), 20141. https://doi.org/10.22435/bpk.v44i1.4944.1-12

Wilai, P., Namgay, R., Ali, R. S. M., Saingamsook, J., Saeung, A., Junkum, A., Walton, C., Harbach, R. E., & Somboon, P. (2020). A Multiplex PCR Based on Mitochondrial COI Sequences for

Identification of Members of the Anopheles barbirostris Complex (Diptera: Culicidae) in Thailand and Other Countries in the Region. Insects, 11(7), 1-13. https://doi.org/10.3390/insects11070409

Windasari, W., Islam, M. F., & Taher, A. (2022). Identifikasi Keragaman Genetik Daerah 3’utr Gen Ldlr Penduduk Asli Papua. Jurnal Natural, 18(2), 140-145.

Wirdateti & Semiadi, G. (2017). Variasi Genetik Trenggiling Sitaan di Sumatra, Jawa, dan Kalimantan Berdasarkan Control Region

DNA Mitokondria. Jurnal Veteriner, 18(2), 181-191. https://doi.org/10.19087/jveteriner.2017.18.2.181

WHO-World Health Organization (2020). World Malaria Report 2020. World Health Organisation: Geneva.

WHO-World Health Organization. (2021). WHO Guideliness for Malaria. World Health Organisation : Geneva.

Zarowiecki, M., Linton, Y. M., Post, R. J., Bangs, M. J., Htun, P. T., Hlaing, T., ... & Walton, C. (2014). Repeated landmass reformation limits diversification in the widespread littoral zone mosquito Anopheles sundaicus sensu lato in the I ndo‐O riental R egion. Molecular ecology, 23(10), 2573-2589. https://doi.org/10.1111/mec.12761




DOI: http://dx.doi.org/10.30821/biolokus.v6i1.1749

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Biolokus: Jurnal Penelitian Pendidikan Biologi dan Biologi

indexed by :